
CHAPTER 2

Differential Calculus of

Functions of One Variable

IN THIS CHAPTER we study the differential calculus of functions of one variable.

SECTION 2.1 introduces the concept of function and discusses arithmetic operations on

functions, limits, one-sided limits, limits at ˙1, and monotonic functions.

SECTION 2.2 defines continuity and discusses removable discontinuities, composite func-

tions, bounded functions, the intermediate value theorem, uniform continuity, and addi-

tional properties of monotonic functions.

SECTION 2.3 introduces the derivative and its geometric interpretation. Topics covered in-

clude the interchange of differentiation and arithmetic operations, the chain rule, one-sided

derivatives, extreme values of a differentiable function, Rolle’s theorem, the intermediate

value theorem for derivatives, and the mean value theorem and its consequences.

SECTION 2.4 presents a comprehensive discussion of L’Hospital’s rule.

SECTION 2.5 discusses the approximation of a function f by the Taylor polynomials of

f and applies this result to locating local extrema of f . The section concludes with the

extended mean value theorem, which implies Taylor’s theorem.

2.1 FUNCTIONS AND LIMITS

In this section we study limits of real-valued functions of a real variable. You studied

limits in calculus. However, we will look more carefully at the definition of limit and prove

theorems usually not proved in calculus.

A rule f that assigns to each member of a nonempty set D a unique member of a set Y

is a function from D to Y . We write the relationship between a member x of D and the

member y of Y that f assigns to x as

y D f .x/:

The set D is the domain of f , denoted by Df . The members of Y are the possible values

of f . If y0 2 Y and there is an x0 inD such that f .x0/ D y0, we say that f
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attains or assumes the value y0. The set of values attained by f is the range of f . A real-

valued function of a real variable is a function whose domain and range are both subsets

of the reals. Although we are concerned only with real-valued functions of a real variable

in this section, our definitions are not restricted to this situation. In later sections we will

consider situations where the range or domain, or both, are subsets of vector spaces.

Example 2.1.1 The functions f , g, and h defined on .�1;1/ by

f .x/ D x2; g.x/ D sin x; and h.x/ D ex

have ranges Œ0;1/, Œ�1; 1�, and .0;1/, respectively.

Example 2.1.2 The equation

Œf .x/�2 D x (1)

does not define a function except on the singleton set f0g. If x < 0, no real number satisfies

(1), while if x > 0, two real numbers satisfy (1). However, the conditions

Œf .x/�2 D x and f .x/ � 0

define a function f on Df D Œ0;1/ with values f .x/ D
p
x. Similarly, the conditions

Œg.x/�2 D x and g.x/ � 0

define a function g onDg D Œ0;1/ with values g.x/ D �
p
x. The ranges of f and g are

Œ0;1/ and .�1; 0�, respectively.

It is important to understand that the definition of a function includes the specification

of its domain and that there is a difference between f , the name of the function, and f .x/,

the value of f at x. However, strict observance of these points leads to annoying verbosity,

such as “the function f with domain .�1;1/ and values f .x/ D x.” We will avoid this

in two ways: (1) by agreeing that if a function f is introduced without explicitly defining

Df , then Df will be understood to consist of all points x for which the rule defining

f .x/makes sense, and (2) by bearing in mind the distinction between f and f .x/, but not

emphasizing it when it would be a nuisance to do so. For example, we will write “consider

the function f .x/ D
p
1 � x2,” rather than “consider the function f defined on Œ�1; 1�

by f .x/ D
p
1 � x2,” or “consider the function g.x/ D 1= sinx,” rather than “consider

the function g defined for x ¤ k� (k D integer) by g.x/ D 1= sinx.” We will also write

f D c (constant) to denote the function f defined by f .x/ D c for all x.

Our definition of function is somewhat intuitive, but adequate for our purposes. More-

over, it is the working form of the definition, even if the idea is introduced more rigorously

to begin with. For a more precise definition, we first define the Cartesian product X � Y
of two nonempty sets X and Y to be the set of all ordered pairs .x; y/ such that x 2 X and

y 2 Y ; thus,

X � Y D
˚
.x; y/

ˇ̌
x 2 X; y 2 Y

	
:
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A nonempty subset f of X � Y is a function if no x in X occurs more than once as a first

member among the elements of f . Put another way, if .x; y/ and .x; y1/ are in f , then

y D y1. The set of x’s that occur as first members of f is the domain of f . If x is in the

domain of f , then the unique y in Y such that .x; y/ 2 f is the value of f at x, and we

write y D f .x/. The set of all such values, a subset of Y , is the range of f .

Arithmetic Operations on Functions

Definition 2.1.1 IfDf \Dg ¤ ;; then f Cg; f �g; and fg are defined onDf \Dg

by

.f C g/.x/ D f .x/C g.x/;
.f � g/.x/ D f .x/� g.x/;

and

.fg/.x/ D f .x/g.x/:

The quotient f=g is defined by

�
f

g

�
.x/ D f .x/

g.x/

for x in Df \Dg such that g.x/ ¤ 0:

Example 2.1.3 If f .x/ D
p
4 � x2 and g.x/ D

p
x � 1; then Df D Œ�2; 2� and

Dg D Œ1;1/; so f C g; f � g; and fg are defined on Df \Dg D Œ1; 2� by

.f C g/.x/ D
p
4 � x2 C

p
x � 1;

.f � g/.x/ D
p
4 � x2 �

p
x � 1;

and

.fg/.x/ D .
p
4 � x2/.

p
x � 1/ D

p
.4 � x2/.x � 1/: (2)

The quotient f=g is defined on .1; 2� by

�
f

g

�
.x/ D

r
4 � x2

x � 1
:

Although the last expression in (2) is also defined for �1 < x < �2; it does not represent

fg for such x; since f and g are not defined on .�1;�2�.

Example 2.1.4 If c is a real number, the function cf defined by .cf /.x/ D cf .x/ can

be regarded as the product of f and a constant function. Its domain is Df . The sum and

product of n .� 2/ functions f1, . . . , fn are defined by

.f1 C f2 C � � � C fn/.x/ D f1.x/C f2.x/C � � � C fn.x/
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and

.f1f2 � � �fn/.x/ D f1.x/f2.x/ � � �fn.x/ (3)

onD D
Tn

iD1Dfi
, provided thatD is nonempty. If f1 D f2 D � � � D fn, then (3) defines

the nth power of f :

.f n/.x/ D .f .x//n :

From these definitions, we can build the set of all polynomials

p.x/ D a0 C a1x C � � � C anx
n;

starting from the constant functions and f .x/ D x. The quotient of two polynomials is a

rational function

r.x/ D a0 C a1x C � � � C anx
n

b0 C b1x C � � � C bmxm
.bm ¤ 0/:

The domain of r is the set of points where the denominator is nonzero.

Limits

The essence of the concept of limit for real-valued functions of a real variable is this: If L

is a real number, then limx!x0
f .x/ D L means that the value f .x/ can be made as close

to L as we wish by taking x sufficiently close to x0. This is made precise in the following

definition.

y

x

L + 

L − 

L

y = f (x)

x
0
 − δ x

0
 + δ x

0
 

Figure 2.1.1
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Definition 2.1.2 We say that f .x/ approaches the limit L as x approaches x0, and

write

lim
x!x0

f .x/ D L;

if f is defined on some deleted neighborhood of x0 and, for every � > 0, there is a ı > 0

such that

jf .x/ �Lj < � (4)

if

0 < jx � x0j < ı: (5)

Figure 2.1.1 (page 33) depicts the graph of a function for which limx!x0
f .x/ exists.

Example 2.1.5 If c and x are arbitrary real numbers and f .x/ D cx, then

lim
x!x0

f .x/ D cx0:

To prove this, we write

jf .x/� cx0j D jcx � cx0j D jcjjx � x0j:

If c ¤ 0, this yields

jf .x/� cx0j < � (6)

if

jx � x0j < ı;
where ı is any number such that 0 < ı � �=jcj. If c D 0, then f .x/ � cx0 D 0 for all x,

so (6) holds for all x.
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The next theorem says that a function cannot have more than one limit at a point.

Theorem 2.1.3 If limx!x0
f .x/ exists; then it is unique I that is; if

lim
x!x0

f .x/ D L1 and lim
x!x0

f .x/ D L2; (7)

then L1 D L2:

Proof Suppose that (7) holds and let � > 0. From Definition 2.1.2, there are positive

numbers ı1 and ı2 such that

jf .x/� Li j < � if 0 < jx � x0j < ıi ; i D 1; 2:

If ı D min.ı1; ı2/, then

jL1 � L2j D jL1 � f .x/C f .x/ �L2j
� jL1 � f .x/j C jf .x/ �L2j < 2� if 0 < jx � x0j < ı:

We have now established an inequality that does not depend on x; that is,

jL1 �L2j < 2�:

Since this holds for any positive �, L1 D L2.

Definition 2.1.2 is not changed by replacing (4) with

jf .x/ �Lj < K�; (8)

where K is a positive constant, because if either of (4) or (8) can be made to hold for any

� > 0 by making jx�x0j sufficiently small and positive, then so can the other (Exercise 5).

This may seem to be a minor point, but it is often convenient to work with (8) rather than

(4), as we will see in the proof of the following theorem.

A Useful Theorem about Limits

Theorem 2.1.4 If

lim
x!x0

f .x/ D L1 and lim
x!x0

g.x/ D L2; (9)

then

lim
x!x0

.f C g/.x/ D L1 C L2; (10)

lim
x!x0

.f � g/.x/ D L1 �L2; (11)

lim
x!x0

.fg/.x/ D L1L2; (12)

and, if L2 ¤ 0, (13)

lim
x!x0

�
f

g

�
.x/ D L1

L2

: (14)
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Proof From (9) and Definition 2.1.2, if � > 0, there is a ı1 > 0 such that

jf .x/ �L1j < � (15)

if 0 < jx � x0j < ı1, and a ı2 > 0 such that

jg.x/ � L2j < � (16)

if 0 < jx � x0j < ı2. Suppose that

0 < jx � x0j < ı D min.ı1; ı2/; (17)

so that (15) and (16) both hold. Then

j.f ˙ g/.x/ � .L1 ˙ L2/j D j.f .x/ �L1/˙ .g.x/ �L2/j
� jf .x/� L1j C jg.x/ � L2j < 2�;

which proves (10) and (11).
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Successive applications of the various parts of Theorem 2.1.4 permit us to find limits

without the �–ı arguments required by Definition 2.1.2.

Example 2.1.7 Use Theorem 2.1.4 to find

lim
x!2

9 � x2

x C 1
and lim

x!2
.9 � x2/.x C 1/:

Solution If c is a constant, then limx!x0
c D c, and, from Example 2.1.5, limx!x0

x D
x0. Therefore, from Theorem 2.1.4,

lim
x!2

.9 � x2/ D lim
x!2

9 � lim
x!2

x2

D lim
x!2

9 � . lim
x!2

x/2

D 9 � 22 D 5;
and

lim
x!2

.x C 1/ D lim
x!2

x C lim
x!2

1 D 2C 1 D 3:

Therefore,

lim
x!2

9 � x2

x C 1 D
lim
x!2

.9 � x2/

lim
x!2

.x C 1/ D
5

3

and

lim
x!2

.9 � x2/.x C 1/ D lim
x!2

.9 � x2/ lim
x!2

.x C 1/ D 5 � 3 D 15:

One-Sided Limits

The function

f .x/ D 2x sin
p
x



38 Chapter 2 Differential Calculus of Functions of One Variable

satisfies the inequality

jf .x/j < �

if 0 < x < ı D �=2. However, this does not mean that limx!0 f .x/ D 0, since f is

not defined for negative x, as it must be to satisfy the conditions of Definition 2.1.2 with

x0 D 0 and L D 0. The function

g.x/ D x C jxj
x
; x ¤ 0;

can be rewritten as

g.x/ D
�
x C 1; x > 0;

x � 1; x < 0I
hence, every open interval containing x0 D 0 also contains points x1 and x2 such that

jg.x1/ � g.x2/j is as close to 2 as we please. Therefore, limx!x0
g.x/ does not exist

(Exercise 26).

Although f .x/ and g.x/ do not approach limits as x approaches zero, they each exhibit

a definite sort of limiting behavior for small positive values of x, as does g.x/ for small

negative values of x. The kind of behavior we have in mind is defined precisely as follows.

y

x
x

0
 

x    x
0
 − x    x

0
 +

f (x) = λ

y = f (x)

f (x) = µlim lim

µ

λ

Figure 2.1.2

Definition 2.1.5

(a) We say that f .x/ approaches the left-hand limit L as x approaches x0 from the left,

and write

lim
x!x0�

f .x/ D L;

if f is defined on some open interval .a; x0/ and, for each � > 0, there is a ı > 0

such that

jf .x/ �Lj < � if x0 � ı < x < x0:
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(b) We say that f .x/ approaches the right-hand limit L as x approaches x0 from the

right, and write

lim
x!x0C

f .x/ D L;

if f is defined on some open interval .x0; b/ and, for each � > 0, there is a ı > 0

such that

jf .x/� Lj < � if x0 < x < x0 C ı:

Figure 2.1.2 shows the graph of a function that has distinct left- and right-hand limits at

a point x0.

Example 2.1.8 Let

f .x/ D x

jxj ; x ¤ 0:

If x < 0, then f .x/ D �x=x D �1, so

lim
x!0�

f .x/ D �1:

If x > 0, then f .x/ D x=x D 1, so

lim
x!0C

f .x/ D 1:

Example 2.1.9 Let

g.x/ D x C jxj.1C x/
x

sin
1

x
; x ¤ 0:

If x < 0, then

g.x/ D �x sin
1

x
;

so

lim
x!0�

g.x/ D 0;

since

jg.x/ � 0j D
ˇ̌
ˇ̌x sin

1

x

ˇ̌
ˇ̌ � jxj < �

if �� < x < 0; that is, Definition 2.1.5(a) is satisfied with ı D �. If x > 0, then

g.x/ D .2C x/ sin
1

x
;

which takes on every value between �2 and 2 in every interval .0; ı/. Hence, g.x/ does not

approach a right-hand limit at x approaches 0 from the right. This shows that a function

may have a limit from one side at a point but fail to have a limit from the other side.
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Example 2.1.10 We leave it to you to verify that

lim
x!0C

� jxj
x
C x

�
D 1;

lim
x!0�

� jxj
x
C x

�
D �1;

lim
x!0C

x sin
p
x D 0;

and limx!0� sin
p
x does not exist.

Left- and right-hand limits are also called one-sided limits. We will often simplify the

notation by writing

lim
x!x0�

f .x/ D f .x0�/ and lim
x!x0C

f .x/ D f .x0C/:

The following theorem states the connection between limits and one-sided limits. We

leave the proof to you (Exercise 12).

Theorem 2.1.6 A function f has a limit at x0 if and only if it has left- and right-hand

limits at x0; and they are equal. More specifically;

lim
x!x0

f .x/ D L

if and only if

f .x0C/ D f .x0�/ D L:

With only minor modifications of their proofs (replacing the inequality 0 < jx�x0j < ı
by x0 � ı < x < x0 or x0 < x < x0 C ı), it can be shown that the assertions of Theo-

rems 2.1.3 and 2.1.4 remain valid if “limx!x0
” is replaced by “limx!x0�” or “limx!x0C”

throughout (Exercise 13).

Limits at ˙1

Limits and one-sided limits have to do with the behavior of a function f near a limit point

ofDf . It is equally reasonable to study f for large positive values of x ifDf is unbounded

above or for large negative values of x ifDf is unbounded below.

Definition 2.1.7 We say that f .x/ approaches the limit L as x approaches 1, and

write

lim
x!1

f .x/ D L;

if f is defined on an interval .a;1/ and, for each � > 0, there is a number ˇ such that

jf .x/� Lj < � if x > ˇ:
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Figure 2.1.3 provides an illustration of the situation described in Definition 2.1.7.

x    ∞

lim f (x) = L

β

y

L +

L −

L

x

Figure 2.1.3

We leave it to you to define the statement “limx!�1 f .x/ D L” (Exercise 14) and to

show that Theorems 2.1.3 and 2.1.4 remain valid if x0 is replaced throughout by1 or �1
(Exercise 16).

Example 2.1.11 Let

f .x/ D 1 � 1

x2
; g.x/ D 2jxj

1C x ; and h.x/ D sin x:

Then

lim
x!1

f .x/ D 1;

since

jf .x/� 1j D 1

x2
< � if x >

1p
�
;

and

lim
x!1

g.x/ D 2;

since

jg.x/ � 2j D
ˇ̌
ˇ̌ 2x

1C x � 2
ˇ̌
ˇ̌ D 2

1C x <
2

x
< � if x >

2

�
:

However, limx!1 h.x/ does not exist, since h assumes all values between �1 and 1 in any

semi-infinite interval .�;1/.
We leave it to you to show that limx!�1 f .x/ D 1, limx!�1 g.x/ D �2, and

limx!�1 h.x/ does not exist (Exercise 17).
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We will sometimes denote limx!1 f .x/ and limx!�1 f .x/ by f .1/ and f .�1/,
respectively.

Infinite Limits

The functions

f .x/ D 1

x
; g.x/ D 1

x2
; p.x/ D sin

1

x
;

and

q.x/ D 1

x2
sin

1

x

do not have limits, or even one-sided limits, at x0 D 0. They fail to have limits in different

ways:

� f .x/ increases beyond bound as x approaches 0 from the right and decreases beyond

bound as x approaches 0 from the left;

� g.x/ increases beyond bound as x approaches zero;

� p.x/ oscillates with ever-increasing frequency as x approaches zero;

� q.x/ oscillates with ever-increasing amplitude and frequency as x approaches 0.

The kind of behavior exhibited by f and g near x0 D 0 is sufficiently common and

simple to lead us to define infinite limits.

Definition 2.1.8 We say that f .x/ approaches 1 as x approaches x0 from the left,

and write

lim
x!x0�

f .x/ D1 or f .x0�/ D1;

if f is defined on an interval .a; x0/ and, for each real number M , there is a ı > 0 such

that

f .x/ > M if x0 � ı < x < x0:

Example 2.1.12 We leave it to you to define the other kinds of infinite limits (Exer-

cises 19 and 21) and show that

lim
x!0�

1

x
D �1; lim

x!0C

1

x
D 1I

lim
x!0�

1

x2
D lim

x!0C

1

x2
D lim

x!0

1

x2
D 1I

lim
x!1

x2 D lim
x!�1

x2 D 1I

and

lim
x!1

x3 D1; lim
x!�1

x3 D �1:
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Throughout this book, “limx!x0
f .x/ exists” will mean that

lim
x!x0

f .x/ D L; where L is finite.
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Example 2.1.15 Let

g.x/ D 2x2 � x C 1
3x2 C 2x � 1

:

Trying to find limx!1 g.x/ by applying a version of Theorem 2.1.4 to this fraction as it is

written leads to an indeterminate form (try it!). However, by rewriting it as

g.x/ D 2 � 1=xC 1=x2

3C 2=x � 1=x2
; x ¤ 0;

we find that

lim
x!1

g.x/ D
lim

x!1
2 � lim

x!1
1=xC lim

x!1
1=x2

lim
x!1

3C lim
x!1

2=x � lim
x!1

1=x2
D 2 � 0C 0
3C 0� 0

D 2

3
:

Monotonic Functions

A function f is nondecreasing on an interval I if

f .x1/ � f .x2/ whenever x1 and x2 are in I and x1 < x2; (19)

or nonincreasing on I if

f .x1/ � f .x2/ whenever x1 and x2 are in I and x1 < x2: (20)

In either case, f is monotonic on I . If � can be replaced by < in (19), f is increasing on

I . If � can be replaced by > in (20), f is decreasing on I . In either of these two cases, f

is strictly monotonic on I .

Example 2.1.16 The function

f .x/ D
(
x; 0 � x < 1;

2; 1 � x � 2;

is nondecreasing on I D Œ0; 2� (Figure 2.1.4), and �f is nonincreasing on I D Œ0; 2�.

2

21

1

y

x
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Figure 2.1.4

The function g.x/ D x2 is increasing on Œ0;1/ (Figure 2.1.5),

y

x

y = x2

Figure 2.1.5

and h.x/ D �x3 is decreasing on .�1;1/ (Figure 2.1.6).

y = − x 3

y

x

Figure 2.1.6
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