CHAPTER 2

Differential Calculus of

Functions of One Variable

IN THIS CHAPTER we study the differential calculus of functions of one variable.

SECTION 2.1 introduces the concept of function and discusses arithmetic operations on
functions, limits, one-sided limits, limits at =00, and monotonic functions.

SECTION 2.2 defines continuity and discusses removable discontinuities, composite func-
tions, bounded functions, the intermediate value theorem, uniform continuity, and addi-
tional properties of monotonic functions.

SECTION 2.3 introduces the derivative and its geometric interpretation. Topics covered in-
clude the interchange of differentiation and arithmetic operations, the chain rule, one-sided
derivatives, extreme values of a differentiable function, Rolle’s theorem, the intermediate
value theorem for derivatives, and the mean value theorem and its consequences.

SECTION 2.4 presents a comprehensive discussion of L’Hospital’s rule.

SECTION 2.5 discusses the approximation of a function f by the Taylor polynomials of
f and applies this result to locating local extrema of f. The section concludes with the
extended mean value theorem, which implies Taylor’s theorem.

2.1 FUNCTIONS AND LIMITS

In this section we study limits of real-valued functions of a real variable. You studied
limits in calculus. However, we will look more carefully at the definition of limit and prove
theorems usually not proved in calculus.

A rule f that assigns to each member of a nonempty set D a unique member of a set ¥’
is a function from D to Y. We write the relationship between a member x of D and the
member y of Y that f assigns to x as

y = f(x).

The set D is the domain of f, denoted by D y. The members of Y are the possible values
of f.If yo € Y and there is an x¢ in D such that f(x¢) = yo, we say that f
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attains or assumes the value yg. The set of values attained by f is the range of f. A real-
valued function of a real variable is a function whose domain and range are both subsets
of the reals. Although we are concerned only with real-valued functions of a real variable
in this section, our definitions are not restricted to this situation. In later sections we will
consider situations where the range or domain, or both, are subsets of vector spaces.

Example 2.1.1 The functions f, g, and & defined on (—o0, 00) by
f(x)=x2 g(x)=sinx, and h(x)=e"
have ranges [0, 00), [—1, 1], and (0, 00), respectively. ]
Example 2.1.2 The equation
[f ()] = x (1)

does not define a function except on the singleton set {0}. If x < 0, no real number satisfies
(1), while if x > 0, two real numbers satisfy (1). However, the conditions

[f()F =x and f(x)=0
define a function f on D sy = [0, co) with values f(x) = /x. Similarly, the conditions
[gW))* =x and  g(x) <0

define a function g on Dz = [0, 0o) with values g(x) = —./x. The ranges of f and g are
[0, 00) and (—o0, 0], respectively. ]

It is important to understand that the definition of a function includes the specification
of its domain and that there is a difference between f, the name of the function, and f(x),
the value of f at x. However, strict observance of these points leads to annoying verbosity,
such as “the function f with domain (—o0, 00) and values f(x) = x.” We will avoid this
in two ways: (1) by agreeing that if a function f is introduced without explicitly defining
Dy, then Dy will be understood to consist of all points x for which the rule defining
f(x) makes sense, and (2) by bearing in mind the distinction between f and f(x), but not
emphasizing it when it would be a nuisance to do so. For example, we will write “consider
the function f(x) = ~/1 — x2,” rather than “consider the function f defined on [—1, 1]
by f(x) = 1 —x2 or “consider the function g(x) = 1/sinx,” rather than “consider
the function g defined for x # kx (k = integer) by g(x) = 1/sinx.” We will also write
f = c (constant) to denote the function f defined by f(x) = ¢ for all x.

Our definition of function is somewhat intuitive, but adequate for our purposes. More-
over, it is the working form of the definition, even if the idea is introduced more rigorously
to begin with. For a more precise definition, we first define the Cartesian product X x Y
of two nonempty sets X and Y to be the set of all ordered pairs (x, y) such that x € X and
y € Y; thus,

XxY = {(x,y)|x€X,er}.
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A nonempty subset f of X x Y is a function if no x in X occurs more than once as a first
member among the elements of f. Put another way, if (x, y) and (x, y1) are in f, then
¥ = y1. The set of x’s that occur as first members of f is the domain of f. If x is in the
domain of f, then the unique y in Y such that (x, y) € f is the value of f at x, and we
write y = f(x). The set of all such values, a subset of Y, is the range of f.

Arithmetic Operations on Functions

Definition 2.1.1If Dy N D, # @, then f+g, f —g, and fg are definedon D y N D,
by

(f +9)(x) = f(x) + g(x),

(f —&)x) = f(x) — gx),

and

(f&)(x) = f(x)g(x).
The quotient f/g is defined by
£) =L
(g ) g(x)
for x in D y N Dg such that g(x) # 0. ]

Example 2.1.3 If f(x) = v/4—x2 and g(x) = v/x — 1, then Dy = [-2,2] and
Dg =[1,00),50 f + g, f —g,and fg are defined on Dy N Dy =[1,2] by

(f +2)(x) =vV4—x2+Vx—1,
(f —9x) =vVad—x2—-Vx—1,

and

(/o) = (V4= x)(Vx—1) = V@ —x2)(x - 1). 2
The quotient f/g is defined on (1, 2] by

(2o
g x—1

Although the last expression in (2) is also defined for —oo < x < —2, it does not represent
fg for such x, since f and g are not defined on (—oo, —2]. ]

Example 2.1.4 Ifc is a real number, the function ¢ f defined by (¢ f)(x) = ¢f(x) can
be regarded as the product of f* and a constant function. Its domain is D . The sum and
product of n (> 2) functions f1, ..., f, are defined by

i+ ot X)) = filx) + f2(x) + -+ falx)
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and

(Srfae- f)(X) = f1(x) fa(x) -+ fu(x) 3)
on D = (/_, Dy, provided that D is nonempty. If f; = f> =--+ = f,, then (3) defines
the nth power of f:

(f"Mx) = (f ()"

From these definitions, we can build the set of all polynomials
p(x)=ao+aix +---+anx",

starting from the constant functions and f(x) = x. The quotient of two polynomials is a
rational function
ap+aix +---+a,x"
r(x) = b 0).
(1) = g b £0)

The domain of r is the set of points where the denominator is nonzero. [ ]

Limits

The essence of the concept of limit for real-valued functions of a real variable is this: If L
is a real number, then limy_, , f(x) = L means that the value f(x) can be made as close
to L as we wish by taking x sufficiently close to xo. This is made precise in the following
definition.

Figure 2.1.1
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Definition 2.1.2 We say that f(x) approaches the limit L as x approaches xg, and
write

lim f(x) =1L,
X—>X0

if f is defined on some deleted neighborhood of x¢ and, for every € > 0, thereisa § > 0
such that
|f(x)—L|<e )
if
0 < |x — xo| <8. (5)
Figure 2.1.1 (page 33) depicts the graph of a function for which limy_,, f(x) exists. W

Example 2.1.5 If ¢ and x are arbitrary real numbers and f(x) = cx, then

lim f(x) = cxo.
X—>X0

To prove this, we write

| f(x) = cxol = [cx — exo| = |c]x — xol.
If ¢ # 0, this yields
| f(x) —cxol <€ (6)
if
|x — xo| <6,

where § is any number such that 0 < § < ¢/|c|. If ¢ = 0, then f(x) — cxo = 0 for all x,
so (6) holds for all x. |



Section 2.1 Functions and Limits 35

The next theorem says that a function cannot have more than one limit at a point.
Theorem 2.1.3 Iflimy_x, f(x) exists, then it is unique ; that is, if
lim f(x) =Ly and lim f(x)= L,, @)
X—>X0 X—>X0
then L1 = L.

Proof Suppose that (7) holds and let € > 0. From Definition 2.1.2, there are positive
numbers 81 and §, such that

|f(x)—Li|<e if O0<|x—x0| <6, i=12.
If § = min(8y, 63), then

|L1— La| = |L1 — f(x) + f(x) — La|
<|Li— f(x)|+|f(x)—Lz| <2 if 0<]|x—xq| <3$.

We have now established an inequality that does not depend on x; that is,
|L1 — L2| < 2e.

Since this holds for any positive e, L1 = L. a
Definition 2.1.2 is not changed by replacing (4) with

| f(x) — L| < Ke, ®)

where K is a positive constant, because if either of (4) or (8) can be made to hold for any
€ > 0 by making |x — x| sufficiently small and positive, then so can the other (Exercise 5).
This may seem to be a minor point, but it is often convenient to work with (8) rather than
(4), as we will see in the proof of the following theorem.

A Useful Theorem about Limits

Theorem 2.1.4 If

Jim f(x) =Ly and  lim g(x) = Lo, ©))
then
Jm (f +8)(x) = L1 + Lo, (10)
Jim (f —g)(x) = L1 — La. an
xligclo(fg)(x) = L1 Lo, (12)
and, if Ly # 0, (13)

lim (i) ) = &1, (14)
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Proof From (9) and Definition 2.1.2, if € > 0, there is a §; > 0 such that
|f(x) = Li| <€ 5)
if 0 < |x — xo| < 81, and a § > 0 such that
|g(x) — La| <€ (16)
if 0 < |x — xo| < 82. Suppose that
0 < |x — xo| < 8 = min(dy, 63), 17
so that (15) and (16) both hold. Then

I(f £8)(x) — (L1 £ La)| = |(f(x) — L) £ (g(x) — L2)|
< [f(x) = L1| + |g(x) — La| < 2¢,

which proves (10) and (11).
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Successive applications of the various parts of Theorem 2.1.4 permit us to find limits
without the e—§ arguments required by Definition 2.1.2.

Example 2.1.7 Use Theorem 2.1.4 to find
9 — x2

1m
x=2 x + 1

and  lim(9 — x?)(x + 1).
x—>2

Solution If ¢ is a constant, then limy_,x, ¢ = ¢, and, from Example 2.1.5, limy_x, x =
Xxo. Therefore, from Theorem 2.1.4,

lim (9 — x?) = lim 9 — lim x?
x—>2 x—>2 x—>2
= lim 9 — (lim x)?
Jig 9= (lirg x)
=9-22=5,
and
lim(x+1)=limx+liml=241=3.
x—>2 x—>2 x—>2
Therefore,
9 x2 lir%(9—x2) 5
lim = x.—> = —
x—2 x +1 lim(x + 1) 3
x—>2
and

lim (9 — x?)(x + 1) = lim(9 — x?) lim(x + 1) = 5-3 = 15. [ ]
x—>2 x—2 x—2

One-Sided Limits

The function

f(x) = 2x sin/x
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satisfies the inequality

|f(0)] <€

if 0 < x < § = ¢/2. However, this does not mean that limy_.o f(x) = 0, since f is
not defined for negative x, as it must be to satisfy the conditions of Definition 2.1.2 with
xo = 0 and L = 0. The function

X
sw=x+ " czo
can be rewritten as
x+1, x>0,

gx) =

x—1, x<0;

hence, every open interval containing xo = 0 also contains points x; and x» such that
|g(x1) — g(x2)] is as close to 2 as we please. Therefore, lim,_.x, g(x) does not exist
(Exercise 26).

Although f(x) and g(x) do not approach limits as x approaches zero, they each exhibit
a definite sort of limiting behavior for small positive values of x, as does g(x) for small
negative values of x. The kind of behavior we have in mind is defined precisely as follows.

lim f(x)=A lim fx)=pn

X"XO— X_'X0+
Figure 2.1.2

Definition 2.1.5

(a) We say that f(x) approaches the left-hand limit L as x approaches xo from the left,
and write
lim f(x) =L,
X—>x0—
if f is defined on some open interval (a, x¢) and, for each € > 0, thereisa é > 0
such that
|f(x)—Ll<e if x9—68<x <Xxop.
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(b) We say that f(x) approaches the right-hand limit L as x approaches xq from the
right, and write
lim f(x)=1L,

xX—=>x0+

if f is defined on some open interval (x¢, ) and, for each € > 0, thereisa é > 0
such that
|f(x)—L|<e if x¢9<x<x0+8. [ ]

Figure 2.1.2 shows the graph of a function that has distinct left- and right-hand limits at
a point xo.

Example 2.1.8 Let
X
f('x) = T X # 0.
|x|
If x <0, then f(x) =—x/x =—1,s0
lir(r)l f(x)=-1.
If x > 0, then f(x) =x/x =1,s0

xl_l)r(r)1+ fx)=1. ]

Example 2.1.9 Let

x+x|1+x) . 1
— S1n

g(x) = -, x #0.
X
If x <0, then
1
g(x) = —xsin —,
X
o)
lim g(x) =0,
x—0—
since .
lg(x) —0] = |xsin—| < |x| <€
X

if —e < x < 0; that is, Definition 2.1.5(a) is satisfied with § = €. If x > 0, then

g(x) = (2 + x)sin l,
X

which takes on every value between —2 and 2 in every interval (0, ). Hence, g(x) does not
approach a right-hand limit at x approaches O from the right. This shows that a function
may have a limit from one side at a point but fail to have a limit from the other side. [ ]
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Example 2.1.10 We leave it to you to verify that
()
Iim [ —+x])= 1,
x—>0+ X

. |x| _
Iim | —+x)=-1,
x—>0— X

lim xsin/x = 0,
x—>0+

and limy_,¢— sin 4/x does not exist. |

Left- and right-hand limits are also called one-sided limits. We will often simplify the
notation by writing

m f(x) = f(xo—) and xlifc%+ f(x) = fxo+).

The following theorem states the connection between limits and one-sided limits. We
leave the proof to you (Exercise 12).

Theorem 2.1.6 A function f has a limit at xg if and only if it has left- and right-hand
limits at xo, and they are equal. More specifically,

A, S0 =1
if and only if
Sf(xo+) = f(xo—) = L.

With only minor modifications of their proofs (replacing the inequality 0 < |x —x¢| < §
by xog —8 < X < xgorxg < x < Xg + §), it can be shown that the assertions of Theo-
rems 2.1.3 and 2.1.4 remain valid if “limy_x,” is replaced by “limy_, x,—” or “limy_ x,+”
throughout (Exercise 13).

Limits at o0

Limits and one-sided limits have to do with the behavior of a function f near a limit point
of D r. Itis equally reasonable to study f for large positive values of x if D ¢ is unbounded
above or for large negative values of x if D s is unbounded below.

Definition 2.1.7 We say that f(x) approaches the limit L as x approaches oo, and
write

lim f(x) =L,
X—>00
if f is defined on an interval (a, o) and, for each € > 0, there is a number 8 such that

| f(x)—L| <e if x> B. ]
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Figure 2.1.3 provides an illustration of the situation described in Definition 2.1.7.

y
L+e
L /\ P
/ \_/ ~
L-¢
I
I
I lim  f()=L
| X 00
I
I
| X
p

Figure 2.1.3

We leave it to you to define the statement “limy_,_», f(x) = L” (Exercise 14) and to
show that Theorems 2.1.3 and 2.1.4 remain valid if x¢ is replaced throughoutby oo or —oo
(Exercise 16).

Example 2.1.11 Let

1 2
fx)=1- ol gx) = 1-|’__x|x’ and h(x) =sinx.
Then
lim f(x) =1,
X—>00
since
f 1= <e if x>
x)—1|l=—<e€e if x>—,
x2 Je
and
lim g(x) =2,
X—>00
since
2(x) — 2| 2x 2 - 2 - ” 2
xX) — = —_ = — — 1 X > —.
g 1+x 1+x X ¢ €

However, lim,_, o /(x) does not exist, since & assumes all values between —1 and 1 in any
semi-infinite interval (z, 00).

We leave it to you to show that limy_,_o f(x) = 1, limy_,_o g(x) = —2, and
limy, oo 1(x) does not exist (Exercise 17). [ |
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We will sometimes denote limy_,oo f(x) and limy—,—oo f(x) by f(c0) and f(—00),
respectively.

Infinite Limits

The functions | | |
f(x): > g(x): 20 p(x):sin—,
X X X
and

1
q(x) = —sin—
X X

do not have limits, or even one-sided limits, at xo = 0. They fail to have limits in different
ways:

e f(x) increases beyond bound as x approaches 0 from the right and decreases beyond
bound as x approaches 0 from the left;

e g(x) increases beyond bound as x approaches zero;
e p(x) oscillates with ever-increasing frequency as x approaches zero;

e g(x) oscillates with ever-increasing amplitude and frequency as x approaches 0.

The kind of behavior exhibited by f and g near xo = 0 is sufficiently common and
simple to lead us to define infinite limits.

Definition 2.1.8 We say that f(x) approaches oo as x approaches xo from the left,
and write
lim f(x) =00 or f(xo—) = o0,
X—=>X0—
if f is defined on an interval (a, xo) and, for each real number M, there is a § > 0 such
that
fx)>M if x9—08<x < Xxo. ]

Example 2.1.12 We leave it to you to define the other kinds of infinite limits (Exer-
cises 19 and 21) and show that

lim — = —o0, lim — = oc;
x—>0— X x—>0+ X
. 1 . 1 .1
lim — = lim — = lim — = o0;
x—0— x2 x—0+ x2 x—0 x2
lim x> = lim x? = oo;
X—>00 X—>—00
and
lim x3 = 00, lim x3 = —o0. |

X—>00 X—>—00
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Throughout this book, “lim,_,x, f(x) exists” will mean that

lim f(x) =L, wherelL is finite.

X—>X0
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Example 2.1.15 Let
2x2—x+1

3x24+2x—1°
Trying to find lim,—oc g(x) by applying a version of Theorem 2.1.4 to this fraction as it is
written leads to an indeterminate form (try it!). However, by rewriting it as

gx) =

2—1/x+1/x2
=127 /T 2,
s =3 i Y7
we find that
. . . 2
. Jim 2= Jim Vst Bm 1/ 5040 2
lim g(x) = = . o = - .
x—>00 lim 3+ lim 2/x — lim 1/x 3+40-0 3
X—>00 X—>00 X—>00

Monotonic Functions
A function f is nondecreasing on an interval [ if

f(x1) < f(x2) whenever x1 and x5 are in [ and x; < x5, (19)
or nonincreasing on [ if

f(x1) > f(x2) whenever x; and x5 are in / and x1 < Xx». (20)

In either case, f is monotonic on I. If < can be replaced by < in (19), f is increasing on
I. If > can be replaced by > in (20), f is decreasing on I. In either of these two cases, f
is strictly monotonicon I .

Example 2.1.16 The function

7 x, 0<x<l,
(x) =
2, 1<x<2,
is nondecreasing on / = [0, 2] (Figure 2.1.4), and — f is nonincreasing on / = [0, 2].
y
2 |-
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Figure 2.1.4
The function g(x) = x? is increasing on [0, oo) (Figure 2.1.5),

y
y=x’
X
Figure 2.1.5
and h(x) = —x3 is decreasing on (—o0, 00) (Figure 2.1.6).

y=-x

Figure 2.1.6
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